Nuprl Lemma : abs-fifo_wf 11,40

es:ES, CT:Type. abs-fifo{i:l}(C;T ComponentSpec(:(:C  C T;:C  T
latex


Definitionss = t, t  T, x:AB(x), x:AB(x), E, {x:AB(x)} , a:A fp B(a), E(X), abs-S , f(a), x:A  B(x), x:AB(x), strong-subtype(A;B), P  Q, ES, Type, AbsInterface(A), abs-R , e c e', , X(e), x.A(x), xt(x), t.2, P & Q, Q  f P, abs-fifo{i:l}(C;T), ComponentSpec(A;B), b, True, T, Dec(P), b | a, a ~ b, a  b, a <p b, a < b, A c B, x f y, xLP(x), (xL.P(x)), r  s, r < s, q-rel(r;x), Outcome, (x  l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), es-r-immediate-pred(es;R;e';e), same-thread(es;p;e;e'), [ei p j], [ei p j], f2f+-pred(e',e), SqStable(P), P  Q, A, a =!x:TQ(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a  b, IsIntegDom(r), IsPrimeIdeal(R;P), f  g, e  X
Lemmases-is-interface wf, sq stable from decidable, decidable assert, assert wf, es-component wf, antecedent-surjection wf, es-interface-val wf, pi2 wf, es-interface-val wf2, es-causle wf, es-interface wf, event system wf, abs-R wf, member wf, es-E-interface wf, abs-S wf, es-E wf, subtype rel wf

origin